Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression.
نویسنده
چکیده
BACKGROUND AND AIMS The purpose of this study was to compare the relative accuracy of different thermal-germination models in predicting germination-time under constant-temperature conditions. Of specific interest was the assessment of shape assumptions associated with the cardinal-temperature germination model and probit distribution often used to distribute thermal coefficients among seed subpopulations. METHODS The seeds of four rangeland grass species were germinated over the constant-temperature range of 3-38 degrees C and monitored for subpopulation variability in germination-rate response. Subpopulation-specific germination rate was estimated as a function of temperature and residual model error for three variations of the cardinal-temperature model, non-linear regression and piece-wise linear regression. The data were used to test relative model fit under alternative assumptions regarding model shape. KEY RESULTS In general, optimal model fit was obtained by limiting model-shape assumptions. All models were relatively accurate in the sub-optimal temperature range except in the 3 degrees C treatment where predicted germination times were in error by as much as 70 d for the cardinal-temperature models. CONCLUSIONS Germination model selection should be driven by research objectives. Cardinal-temperature models yield coefficients that can be directly compared for purposes of screening germplasm. Other model formulations, however, may be more accurate in predicting germination-time, especially at low temperatures where small errors in predicted rate can result in relatively large errors in germination time.
منابع مشابه
Predicting germination response to temperature. II. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data.
BACKGROUND AND AIMS Most current thermal-germination models are parameterized with subpopulation-specific rate data, interpolated from cumulative-germination-response curves. The purpose of this study was to evaluate the relative accuracy of three-dimensional models for predicting cumulative germination response to temperature. Three-dimensional models are relatively more efficient to implement...
متن کاملEstimation of Cardinal Temperatures for Tomato (Solanum lycopersicom) Seed Germination Using Nonlinear Regression Models
Extended Abstract Introduction: Seed germination is one of the most important factors which determine the success of failure of crop establishment. In the absence of other environmental limiting factors such as moisture, temperature would determine the rate and overall seed germination. This research was conducted to investigate the effect of temperature regimes on seed germination, quantify t...
متن کاملQuantifying the Germination of Fagopyrum esculentum Moenc. Using Regression and Thermal-Time Models
Extended Abstract Introduction: Germination is considered the first and most important stage of establishment and consequently, successful competition which is influenced by genetic and environmental factors. Among the environmental factors influencing the germination, temperature and light are the most important ones. Using different models, the germination response of seeds to temperature c...
متن کاملCardinal temperatures for seed germination of three Quinoa (Chenopodium quinoa Willd.) cultivars
Quinoa (Chenepodium quinoa Willd.) is a grain-like crop which has a high potential of crop yield under arid environments. The objective of this study was to evaluate the responses of seed germination rate and percentage to temperatures and estimate cardinal temperatures in three quinoa cultivars (i.e., Sajama, Titicaca and Santamaria). Germination of quinoa seeds were daily counted at the tempe...
متن کاملارزیابی مدلهای رگرسیونی غیرخطی جهت توصیف پاسخ جوانهزنی بذر چاودار کوهی (Secale mountanum) به دما
The present study sought to evaluate the effect of different temperatures on germination and to determine cardinal temperatures (i.e., base, optimum and maximum) of Secale mountanum at temperatures of 3, 5, 10, 15, 20, 25, 30 and 35oC. Three nonlinear regression models (i.e., segmented, dent-like and beta) were used for quantifying the response of germination rate to temperature. The results sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2006